Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cytotechnology ; 76(3): 329-340, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38736724

RESUMO

Schizandrin A (Sch A) exert anticancer and multidrug resistance-reversing effects in a variety of tumors, but its effect on 5-fluorouracil (5-Fu) in gastric cancer (GC) cells remains unclear. The aim of the present study was to examine the resistance-reversing effect of Schizandrin A and assess its mechanisms in 5-Fu-resistant GC cells.5-Fu-sensitive GC cells were treated with 5-Fu and 5-Fu-resistant GC cells AGS/5-Fu and SGC7901/5-Fu were were established. These cells were stimulated with Schizandrin A alone or co-treated with 5-Fu and their effect on tumor cell growth, proliferation, migration, invasion and ferroptosis-related metabolism were investigated both in vitro and in vivo. A number of additional experiments were conducted in an attempt to elucidate the molecular mechanism of increased ferroptosis. The results of our study suggest that Schizandrin A in combination with 5-Fu might be useful in treating GC by reverse drug resistance. It was shown that Schizandrin A coadministration suppressed metastasis and chemotherapy resistance in 5-Fu-resistant GC cells through facilitating the onset of ferroptosis, which is an iron-dependent form of cell death, which was further demonstrated in a xenograft nude mouse model. Mechanistically, Schizandrin A co-administration synergistically increased the expression of transferin receptor, thus iron accumulates within cells, leading to lipid peroxidation, which ultimately results in 5-Fu-resistant GC cells death. The results of this study have provided a novel strategy for increasing GC chemosensitivity, indicating Schizandrin A as a novel ferroptosis regulator. Mechanistically, ferroptosis is induced by Schizandrin A coadministration via increasing transferrin receptor expression.

2.
Cancer Med ; 13(2): e6942, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38376003

RESUMO

OBJECTIVE: The purpose of this study is to explore the biological mechanism of Schizandrin A (SchA) inducing non-small cell lung cancer (NSCLC) apoptosis. METHODS: The reverse molecular docking tool "Swiss Target Prediction" was used to predict the targets of SchA. Protein-protein interaction analysis was performed on potential targets using the String database. Functional enrichment analyses of potential targets were performed with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. The conformation of SchA binding to target was simulated by chemical-protein interactomics and molecular docking. The effect of SchA on the expression and phosphorylation level of EGFR was detected by Western blot. Lipofectamine 3000 and EGFR plasmids were used to overexpress EGFR. Apoptosis was tested with Annexin V-FITC and propidium iodide staining, and cell cycle was detected by propidium iodide staining. RESULTS: The "Swiss Target Prediction" database predicted 112 and 111 targets based on the 2D and 3D structures of SchA, respectively, of which kinases accounted for the most, accounting for 24%. Protein interaction network analyses showed that molecular targets such as ERBB family and SRC were at the center of the network. Functional enrichment analyses indicated that ERBB-related signaling pathways were enriched. Compound-protein interactomics and molecular docking revealed that SchA could bind to the ATP-active pocket of the EGFR tyrosine kinase domain. Laboratory results showed that SchA inhibited the phosphorylation of EGFR. Insulin could counteract the cytotoxic effect of SchA. EGFR overexpression and excess EGF or IGF-1 had limited impacts on the cytotoxicity of SchA. CONCLUSIONS: Network pharmacology analyses suggested that ERBB family members may be the targets of SchA. SchA can inhibit NSCLC at least in part by inhibiting EGFR phosphorylation, and activating the EGFR bypass can neutralize the cytotoxicity of SchA.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ciclo-Octanos , Lignanas , Neoplasias Pulmonares , Compostos Policíclicos , Humanos , Apoptose , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Ciclo-Octanos/farmacologia , Receptores ErbB/genética , Lignanas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Simulação de Acoplamento Molecular , Compostos Policíclicos/farmacologia
3.
Mol Biol Rep ; 51(1): 236, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285214

RESUMO

BACKGROUND: Early brain injury (EBI) is the vital factor in determining the outcome of subarachnoid hemorrhage (SAH). Schizandrin A (Sch A), the bioactive ingredient extracted from Schisandra chinensis, has been proved to exert beneficial effects in multiple human diseases. However, the effect of Sch A on SAH remains unknown. The current study was designed to explored role and mechanism of Sch A in the pathophysiological process of EBI following SAH. METHOD: A total of 74 male C57BL/6 J mice were subjected to endovascular perforation to establish the SAH model. Different dosages of Sch A were administrated post-modeling. The post-modeling assessments included neurological test, brain water content, RT-PCR, immunofluorescence, Nissl staining. Oxygenated hemoglobin was introduced into microglia to establish a SAH model in vitro. RESULT: Sch A significantly alleviated SAH-induced brain edema and neurological impairment. Moreover, application of Sch A remarkably inhibited SAH-induced neuroinflammation, evidenced by the decreased microglial activation and downregulated TNF-α, IL-1ß and IL-6 and expression. Additionally, Sch A, both in vivo and in vitro, protected neurons against SAH-induced inflammatory injury. Mechanismly, administration of Sch A inhibited miR-155/NF-κB axis and attenuated neuroinflammation, as well as alleviating neuronal injury. CONCLUSION: Our data suggested that Sch A could attenuated EBI following SAH via modulating neuroinflammation. The anti-inflammatory effect was exerted, at least partly through the miR-155/NF-κB axis, which may shed light on a possible therapeutic target for SAH.


Assuntos
Lesões Encefálicas , Ciclo-Octanos , Lignanas , MicroRNAs , Compostos Policíclicos , Hemorragia Subaracnóidea , Camundongos , Humanos , Animais , Masculino , Camundongos Endogâmicos C57BL , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , NF-kappa B , Doenças Neuroinflamatórias , Lesões Encefálicas/tratamento farmacológico , MicroRNAs/genética
4.
J Tradit Chin Med ; 43(4): 661-666, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37454250

RESUMO

OBJECTIVE: To explore the synergistic effect of deoxyribonuclease I (DNase I) knockdown combined with Schizandrin A (Sch A) in protecting islet beta-cells (ß-cells) from apoptosis under high-glucose (HG) conditions. METHODS: The concentration of Sch A was detected by Cell Counting Kit-8 (CCK-8). High glucose-cultured rat insulinoma beta cell line (RIN-M5F) cells were treated with Sch A and transfected with DNase I small interfering RNA (siRNA). Cell apoptosis rate and apoptosis-related protein level were examined by flow cytometry and Western blot method respectively. In addition, Na-K-adenosine triphosphatease (Na-K-ATPase) and Ca-Mg-ATPase activity, cell membrane potential, and intracellular Ca concentration was also examined respectively. RESULTS: Our study revealed that HG stimulation can cause a significant increase in DNase I level and cell apoptosis rate. However, Sch A combined with DNase I knockdown can significantly decrease the cell apoptosis rate and apoptosis-related protein levels such as BAX ( 0.05) and Caspase-3 ( 0.01). In addition, we also found that the combination of Sch A and DNase I knockdown can dramatically increase cell membrane potential level, Na-K-ATPase, and Ca-Mg-ATPase activity. Meanwhile, intracellular Ca concentration was also found to be significantly decreased by the synergistic effect of Sch A and DNase I knockdown. CONCLUSION: Overall, our study reveals a synergistic effect of Sch A and DNase I knockdown in protecting ß-cells from HG-induced apoptosis.


Assuntos
Cálcio , Glucose , Animais , Ratos , Cálcio/metabolismo , Apoptose , Desoxirribonuclease I/farmacologia , Adenosina Trifosfatases
5.
J Liposome Res ; 33(4): 338-352, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36974767

RESUMO

Co-loading doxorubicin (DOX) and Schizandrin A (SchA) long-circulating liposome (SchA-DOX-Lip) have been confirmed to have good antitumor activity in vitro. However, in vivo pharmacodynamics, targeting, safety, and mechanism of action of SchA-DOX-Lip still need to be further verified. We investigated the tumor inhibition effect, targeting, safety evaluation, and regulation of tumor apoptosis-related proteins of the SchA-DOX-Lip. MTT assay was used to investigate the inhibitory effect of SchA-DOX-Lip on CBRH7919 cells. The drug uptake of CBRH7919 cells was observed by inverted fluorescence microscope. The tumor-bearing nude mice models of CBRH7919 were established, and the anti-tumor effect of SchA-DOX-Lip in vivo was evaluated by tumor biological observation, H&E staining, and TUNEL staining. The distribution and targeting of SchA-DOX-Lip in nude mice models were investigated by small animal imaging and tissue distribution experiment of CBRH7919. The biosafety of SchA-DOX-Lip was evaluated by blood routine parameters, biochemical indexes, and H&E staining. The expression of tumor-associated apoptotic proteins (Bcl-2, Bax, and Caspase-3) was detected by immunohistochemistry anvd western blotting. The results showed that SchA-DOX-Lip had cytotoxicity to CBRH7919 cells which effectively inhibited the proliferation of CBRH7919 cells, improved the uptake of drugs by CBRH7919 cells and the targeting effect of drugs on tumor site. H&E staining and biochemical detection results showed that SchA-DOX-Lip had high biosafety and did not cause serious damage to normal tissues. Western-blotting and TUNEL staining results showed that SchA-DOX-Lip could improve the regulatory effect of drugs on tumor apoptosis proteins. It was demonstrated that SchA-DOX-Lip had high safety and strong tumor inhibition effects, providing a new method for the clinical treatment of hepatocellular carcinoma (HCC).


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Lipossomos/farmacologia , Camundongos Nus , Neoplasias Hepáticas/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina/farmacologia , Apoptose , Linhagem Celular Tumoral
6.
J Ethnopharmacol ; 308: 116278, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36813246

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shengmai formula (SMF) is a well-known Chinese herbal compound preparation, which is utilized extensively for the treatment of myocardial ischemia, arrhythmia and other life-threatening conditions. Our previous researches have shown that some of the active ingredients in SMF can interact with organic anion transport polypeptide 1B1 (OATP1B1), breast cancer resistance protein (BCRP) and organic anion transporter 1 (OAT1), etc. Organic cation transporter 2 (OCT2) is a highly expressed uptake transporter in the kidney, and its interaction with the major active components in SMF remains unclear. AIM OF THE STUDY: We purposed to explore OCT2-mediated interactions and compatibility mechanisms of the main active compounds in SMF. MATERIALS AND METHODS: Fifteen active ingredients of SMF, including ginsenoside Rb1, Rd, Re, Rg1, Rf, Ro and Rc, methylophiopogonanone A and B, ophiopogonin D and D', schizandrin A and B, schizandrol A and B, were selected to investigate OCT2-mediated interactions in Madin-Darby cacine kidney (MDCK) cells stably expressing OCT2. RESULTS: Among the above 15 main active components, only ginsenosides Rd, Re and schizandrin B could significantly inhibit the uptake of 4-(4-(dimethylamino)styryl)-N-methyl pyridiniumiodide (ASP+), a classical substrate of OCT2. Ginsenoside Rb1 and methylophiopogonanone A can be transported by MDCK-OCT2 cells, and their uptake was significantly reduced when OCT2 inhibitor decynium-22 was added. Ginsenoside Rd could remarkably reduce the uptake of methylophiopogonanone A and ginsenoside Rb1 by OCT2, ginsenoside Re only decreased the uptake of ginsenoside Rb1, while schizandrin B had no effect on the uptake of both. CONCLUSIONS: OCT2 mediates the interaction of the major active components in SMF. Ginsenosides Rd, Re and schizandrin B are the potential inhibitors of OCT2, while ginsenosides Rb1 and methylophiopogonanone A are the potential substrates of OCT2. There is an OCT2-mediated compatibility mechanism among these active ingredients of SMF.


Assuntos
Ginsenosídeos , Animais , Cães , Ginsenosídeos/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportador 2 de Cátion Orgânico , Células Madin Darby de Rim Canino , Proteínas de Neoplasias/metabolismo
7.
J Ethnopharmacol ; 296: 115515, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35777609

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shengmai formula (SMF) is a classical traditional Chinese medicine prescription, which is widely used in the treatment of cardiovascular and cerebrovascular diseases. Our previous studies have demonstrated that some components in SMF can interact with each other through breast cancer resistance protein, sodium taurocholate co-transporting polypeptide, organic anion transporting polypeptide 1B1 and 1B3. Organic anion transporter 1 (OAT1) is highly expressed in kidney, mediating the elimination of many endogenous and exogenous substances. However, the interaction between the main active components in SMF and OAT1 is not clear. AIM OF THE STUDY: This study aimed to investigate the interactions of the major bioactive components in SMF mediated by OAT1. MATERIALS AND METHODS: Four main fractions, namely, ginseng total saponins (GTS), ophiopogon total saponins (OTS), ophiopogon total flavonoids (OTF), fructus schisandrae total lignans (STL), and 12 active components, namely, ginsenoside Rg1, Re, Rd and Rb1, ophiopogonin D and D', methylophiopogonanone A and B, schizandrol A and B, schizandrin A and B, were selected to explore the interactions of SMF with OAT1 using cell and rat models. RESULTS: The above four main fractions in SMF all exhibited inhibitory effects on the uptake of 6-carboxyfluorescein (6-CF), a classic substrate of OAT1. Among the 12 main effective components, only ginsenoside Re, Rd, and methylophiopogonanone A showed inhibition of 6-CF uptake. Additionally, we found that schizandrin B was transported by HEK293-OAT1 cells, and schizandrin B uptake was markedly inhibited by GTS, OTS, OTF, ginsenoside Re, Rd, and methylophiopogonanone A. In rats, ginsenoside Re, Rd, and methylophiopogonanone A jointly increased the AUC(0-t), AUC(0-∞), and Cmax of schizandrin B, but they decreased its clearance in plasma and excretion in urine. CONCLUSIONS: Ginsenoside Re, Rd, and methylophiopogonanone A were the potential inhibitors of OAT1, and may interact with some drugs serving as OAT1 substrates clinically. Schizandrin B was a potential OAT1 substrate, and its OAT1-mediated transport was inhibited by ginsenoside Re, Rd, and methylophiopogonanone A. OAT1-mediated interactions of the main active components in SMF can be regarded as one of the important compatibility mechanisms of traditional Chinese medicine preparations.


Assuntos
Medicamentos de Ervas Chinesas , Ophiopogon , Transportadores de Ânions Orgânicos , Panax , Saponinas , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/farmacologia , Células HEK293 , Humanos , Proteínas de Neoplasias , Panax/química , Ratos
8.
J Liposome Res ; 32(2): 107-118, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33555226

RESUMO

The selectivity of chemotherapeutic agents for liver cancer is poor. When they kill tumour cells, they produce serious adverse reactions in the whole body and multidrug resistance (MDR) is also a major hurdle in liver cancer chemotherapy. Combination therapy is a useful method for overcoming MDR and reducing toxic and side effects. In this study, we developed a long-circulating codelivery system, in which doxorubicin (DOX) and schizandrin A (SchA) are combined against MCF-7/ADR cells. The DOX-SchA long-circulating liposome (DOX-SchA-Lip) was prepared using ammonium sulphate gradient method. The two drugs were co-encapsulated into the distearoyl phosphatidylethanolamine-polyethylene glycol (DSPE-mPEG2000) liposome and the liposome had an average particle size of (100 ± 3.5) nm and zeta electrical potential of (-31.3 ± 0.5) mV. The average encapsulation rate of DOX was 97.98% and that of SchA was 86.94%. DOX in liposome had good sustained-release effect. The results showed that DOX-SchA-Lip could significantly prolong the half-life (t1/2z) of the DOX and SchA, increase their circulation time in vivo, improve its bioavailability and reduce their side effects. Liposome can effectively induce early apoptosis of HepG2/ADR cells and the cell cycle was blocked in S-phase by DOX-SchA-Lip in a dose-dependent manner. The IC50 of compound liposome to HepG2 and HepG2/ADR were 0.55 µmol/L and 1.38 µmol/L, respectively, which could significantly reverse the resistance of HepG2/ADR and the reversion multiple was 30.28. It was verified that DOX-SchA-Lip can effectively kill tumour cells and reverse MDR.


Assuntos
Lipossomos , Neoplasias Hepáticas , Linhagem Celular Tumoral , Ciclo-Octanos , Doxorrubicina/farmacocinética , Resistencia a Medicamentos Antineoplásicos , Humanos , Lignanas , Lipossomos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Compostos Policíclicos
9.
Int J Mol Med ; 48(6)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34643254

RESUMO

Schizandrin A (SchA) can be extracted from the vine plant Schisandra chinensis and has been reported to confer various biologically active properties. However, its potential biological effects on non­small cell lung cancer (NSCLC) remain unknown. Therefore, the present study aims to address this issue. NSCLC and normal lung epithelial cell lines were first treated with SchA. Cell viability and proliferation were measured using CellTiter­Glo Assay and colony formation assays, respectively. PI staining was used to measure cell cycle distribution. Cell cycle­related proteins p53, p21, cyclin D1, CDK4, CDK6, cyclin E1, cyclin E2, CDK2 and DNA damage­related protein SOX4 were detected by western blot analysis. Annexin V­FITC/PI staining, DNA electrophoresis and Hoechst 33342/PI dual staining were used to detect apoptosis. JC­1 and DCFH­DA fluorescent dyes were used to measure the mitochondrial membrane potential and reactive oxygen species concentrations, respectively. Apoptosis­related proteins caspase­3, cleaved caspase­3, poly(ADP­ribose) polymerase (PARP), cleaved PARP, BimEL, BimL, BimS, Bcl2, Bax, caspase­9 and cleaved caspas­9 were measured by western blot analysis. Dansylcadaverine was used to detect the presence of the acidic lysosomal vesicles. The expression levels of the autophagy­related proteins LC3­I/II, p62/SQSTM and AMPKα activation were measured using western blot analysis. In addition, the autophagy inhibitor 3­methyladenine was used to inhibit autophagy. SchA treatment was found to reduce NSCLC cell viability whilst inhibiting cell proliferation. Low concentrations of SchA (10­20 µM) mainly induced G1/S­phase cell cycle arrest. By contrast, as the concentration of SchA used increases (20­50 µM), cells underwent apoptosis and G2/M­phase cell cycle a13rrest. As the treatment concentration of SchA increased from 0 to 50 µM, the expression of p53 and SOX4 protein also concomitantly increased, but the expression of p21 protein was increased by 10 µM SchA and decreased by higher concentrations (20­50 µM). In addition, the mRNA and protein expression levels of Bcl­like 11 (Bim)EL, BimL and BimS increased following SchA application. SchA induced the accumulation of acidic vesicles and induced a marked increase in the expression of LC3­II protein, suggsting that SchA activated the autophagy pathway. However, the expression of the p62 protein was found to be increased by SchA, suggesting that p62 was not degraded during the autophagic flux. The 3­methyladenine exerted no notable effects on SchA­induced apoptosis. Taken together, results from the present study suggest that SchA exerted inhibitory effects on NSCLC physiology by inducing cell cycle arrest and apoptosis. In addition, SchA partially induced autophagy, which did not result in any cytoprotective effects.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ciclo-Octanos/farmacologia , Lignanas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Compostos Policíclicos/farmacologia , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas/genética , Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Mol Med Rep ; 24(5)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34498719

RESUMO

Apart from its basic antioxidant and anti­inflammatory properties, schizandrin A (SchA), which is isolated from Fructus schisandra, can exert anticancer effects on multiple cancer types. However, to the best of our knowledge, there has been no study identifying the impacts of SchA on gastric cancer (GC). Therefore, the aim of the present study was to identify how SchA functioned to affect the progression of GC. To investigate the role of SchA in GC development, Cell Counting Kit­8, colony formation, wound healing and Transwell assays were conducted to assess the viability, proliferation, migration and invasion of AGS cells, respectively. Then, the apoptosis rate and apoptosis­ and endoplasmic reticulum (ER) stress­related protein expression levels in AGS cells exposed to SchA were detected via TUNEL assays and western blotting, respectively. Subsequently, the aforementioned functional assays were performed again in AGS cells exposed to both SchA and the ER stress inhibitor 4­phenylbutyric acid (4­PBA) for the confirmation of the effect of SchA on ER stress in GC. It was found that SchA markedly decreased the viability, proliferation, migration and invasion, while it induced the apoptosis of AGS cells. Moreover, the markers of ER stress were elevated by SchA treatment in AGS cells. Nevertheless, 4­PBA reversed the effects of SchA on the viability, proliferation, migration, invasion and apoptosis of AGS cells, accompanied by decreased expression of ER stress markers. In conclusion, the present study demonstrated that SchA induced the apoptosis and suppressed the proliferation, invasion and migration of GC cells by activating ER stress, which provides a theoretical basis for the use of SchA in the treatment of GC.


Assuntos
Ciclo-Octanos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Lignanas/farmacologia , Compostos Policíclicos/farmacologia , Neoplasias Gástricas/patologia , Cicatrização/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Invasividade Neoplásica , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Células Tumorais Cultivadas
11.
IUBMB Life ; 72(8): 1640-1648, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32623835

RESUMO

AIMS: Schizandrin A (SchA) is a type of lignan with biological properties against oxidation, inflammation, and cancer. Here, we aimed to sustain the bioactive properties of SchA in proliferative and motional phenotypes of MDA-MB-231 cells and their molecular mechanism. METHODS: MDA-MB-231 cells were exposed to SchA. At 24 h after SchA treatment, the viability and proliferation were measured using CCK-8 and BrdU incorporation methods, respectively. Propidium iodide/Annexin V-FITC staining was carried out for detecting apoptotic cells. Migration and invasion were detected by 24-Transwell assay. Proteins expression was evaluated by Western blotting. MDA-MB-231 cells were transfected with microRNA (miR)-155 mimic, and miR-155 was detected by qRT-PCR. RESULTS: SchA weakens the viability of MDA-MB-231 cells in a dose-relative way (0-40 µM). Furthermore, 30 µM SchA significantly suppresses proliferation, enhances apoptosis, and inhibits migration and invasion. SchA strikingly decreases miR-155. Exogenous miR-155 counteracts the inhibitory effects that SchA confers on proliferative and motional activities. Finally, SchA was observed to blunt PI3K/AKT and Wnt/ß-catenin while miR-155 mimic reverses the effects. CONCLUSION: Taken together, SchA downregulates miR-155 and results in the suppression of proliferation and motility in breast cancer cells. Our findings proposed that SchA might be used as an underlying therapeutic agent.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Ciclo-Octanos/farmacologia , Lignanas/farmacologia , MicroRNAs/genética , Compostos Policíclicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/efeitos dos fármacos
12.
Mol Ther Nucleic Acids ; 19: 42-49, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31794890

RESUMO

Diabetic retinopathy (DR) is a serious complication of diabetes, which is the main cause of blindness among adults. Traditional Chinese medicines (TCMs) have been proven to delay the development of DR. Nonetheless, the effect of Schizandrin A (SchA) on DR remains uninvestigated. The present study aimed to probe the protective effect of SchA on high-glucose (HG)-induced injury in ARPE-19 cells. We observed that SchA accelerated cell proliferation, prohibited apoptosis, and restrained pro-inflammatory cytokines (monocyte chemoattractant protein-1 [MCP-1], interleukin-6 [IL-6], and tumor necrosis factor alpha [TNF-α]) and reactive oxygen species (ROS) level in HG-stimulated cells. Additionally, miR-145 expression was upregulated in HG and SchA co-treated cells, and miR-145 inhibition reversed the protective effect of SchA on HG-managed ARPE-19 cells. Interestingly, downregulated myeloid differentiation factor 88 (MyD88) was found in HG and SchA co-treated cells, and upregulation of MyD88 was observed in miR-145 inhibitor-transfected cells. Additionally, SchA hindered nuclear factor κB (NF-κB) and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways in HG-treated ARPE-19 cells. The findings validated that SchA could protect ARPE-19 cells from HG-induced cell injury by regulation of miR-145.

13.
Arch Pharm Res ; 42(11): 1012-1020, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31552591

RESUMO

Schisandrin A (Sch A) is one of the principal bioactive lignans isolated from Fructus schisandrae. In this study, we demonstrated its protective effect and biochemical mechanism of action in a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced mouse model of Parkinson's disease. Sch A significantly ameliorated behavioural abnormalities and increased the number of nigral dopaminergic neurons detected by tyrosine hydroxylase immunohistochemistry. Pre-treatment with Sch A significantly decreased the levels of the inflammatory mediators IL-6, IL-1ß, and TNF-α and markedly improved antioxidant defences by inhibiting the activity of MDA and increasing that of SOD. Furthermore, Sch A activated expression of the autophagy-related proteins LC3-II, beclin1, parkin, and PINK1 and increased mTOR expression. Taken together, these findings indicate that Sch A has neuroprotective effects against the development of Parkinson's disease via regulation of brain autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Ciclo-Octanos/administração & dosagem , Lignanas/administração & dosagem , Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Compostos Policíclicos/administração & dosagem , Substância Negra/imunologia , Animais , Proteínas Relacionadas à Autofagia/imunologia , Proteínas Relacionadas à Autofagia/metabolismo , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/patologia , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Intoxicação por MPTP/imunologia , Intoxicação por MPTP/patologia , Masculino , Camundongos , Células PC12 , Ratos , Substância Negra/efeitos dos fármacos , Substância Negra/patologia
14.
Eur J Pharmacol ; 855: 10-19, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31028739

RESUMO

The emergence of resistance to EGF receptor (EGFR) inhibitor therapy is a significant challenge for patients with non-small cell lung cancer (NSCLC). During the past few years, a correlation between EGFR TKIs resistance and dysregulation of IKKß/NF-κB signaling has been increasingly suggested. However, few studies have focused on the effects of combining IKK/NF-κB and EGFR inhibitors to overcome EGFR TKIs resistance. In this study, we discovered that Schizandrin A (Sch A), a lignin compound isolated from Schisandra chinesnesis, could synergize with the EGFR receptor inhibitor Gefitinib to inhibit cell growth, induce cell cycle arrest and apoptosis of HCC827/GR cells. Sch A effectively suppressed the phosphorylation of IKKß and IκBα, as well as the nuclear translocation of NF-κB p65, and showed high and selective affinity for IKKß in surface plasmon resonance (SPR) experiments, indicating that Sch A was a selective IKKß inhibitor. Molecular modeling between IKKß and Sch A suggested that Sch A formed key hydrophobic interactions with IKKß, which may contribute to its potent IKKß inhibitory effect. These findings suggest a novel approach to improve poor clinical outcomes in EGFR TKIs therapy, by combining it with Sch A.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo-Octanos/farmacologia , Gefitinibe/farmacologia , Quinase I-kappa B/metabolismo , Lignanas/farmacologia , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Compostos Policíclicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Quinase I-kappa B/química , Simulação de Dinâmica Molecular , Conformação Proteica
15.
Cancer Biomark ; 24(4): 497-508, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30909188

RESUMO

OBJECTIVE: Schizandrin A (SchA) exerts anticancer potential. However, the effects of SchA on thyroid cancer (TC) have not been clear illuminated. Therefore, we investigated the effects of SchA on TC cell line TPC-1 and the underlying mechanisms. METHODS: TPC-1 cells were treated with SchA and/or transfected with miR-429 mimic, anti-miR-429 and their corresponding negative controls (NC). Cell viability, proliferation, migration, invasion and cell apoptosis were examined by CCK-8 assay, bromodeoxyuridine, modified two-chamber migration assay, Millicell Hanging Cell Culture and flow cytometry analysis, respectively. The expression of miR-429, p16, Cyclin D1, cyclin-dependent kinases 4 (CDK4), matrix metalloprotein (MMP)-2, MMP-9 and Vimentin was detected by qRT-PCR. All protein expression was examined by western blot. RESULTS: SchA inhibited cell proliferation, metastasis and induced cell apoptosis. Moreover, SchA negatively regulated miR-429 expression. Treatment with miR-429 mimic and SchA reversed the results led by SchA and NC. Furthermore, the phosphorylation ß-catenin, mitogen-activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK) were statistically down-regulated by SchA while co-treatment with miR-429 mimic and SchA led to the opposite trend. Moreover, miR-429 knockdown showed contrary results. CONCLUSION: SchA inhibits cell proliferation, migration, invasion and inactivates Wnt/ß-catenin and MEK/ERK signaling pathways by down regulating miR-429.


Assuntos
Ciclo-Octanos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lignanas/farmacologia , MicroRNAs/genética , Compostos Policíclicos/farmacologia , Neoplasias da Glândula Tireoide/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Octanos/química , Humanos , Lignanas/química , Sistema de Sinalização das MAP Quinases , Compostos Policíclicos/química , Interferência de RNA , Neoplasias da Glândula Tireoide/metabolismo , Via de Sinalização Wnt
16.
Am J Transl Res ; 11(1): 199-209, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30787979

RESUMO

Inflammation and oxidative stress are considered major factors in the pathogenesis of ischemic stroke. Increasing evidence has demonstrated that Schizandrin A (Sch A), a lignin compound isolated from Schisandra chinesnesis, exhibits prominent anti-inflammatory and antioxidant activities. In this study, we investigated the anti-inflammatory and antioxidant effects of Sch A against cerebral ischemia/reperfusion (I/R) injury as well as the underlying molecular mechanisms. Sch A treatment significantly improved the neurological score and reduced infarct volume 24 h after reperfusion. It dose-dependently inhibited the expression of cyclooxygenase-2 and inducible nitric oxide synthase, reduced the release of pro-inflammatory cytokines (tumor necrosis factor-α interleukin [IL]-1ß and IL-6), and increased anti-inflammatory cytokines (transforming growth factor-ß and interleukin-10). Furthermore, it increased the activity of superoxide dismutase and catalase, decreased reactive oxygen species production and 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine levels. Transcription of nuclear factor erythroid 2-related factor 2 (Nrf2) and downstream genes (heme oxygenase-1 and NAD[P]H: quinone oxidoreductase 1) increased. Knockdown of Nrf2 by siRNA inhibited the neuroprotective effects of Sch A. In addition, Sch A increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) both in vivo and in vitro. Activation of the Nrf2 pathway as well as the protective effects of Sch A in an oxygen and glucose deprivation-induced injury model was abolished by AMPK knockdown. Our study indicates that Sch A protects against cerebral I/R injury by suppressing inflammation and oxidative stress, and that this effect is regulated by the AMPK/Nrf2 pathway.

17.
Nutr Res ; 64: 64-71, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30802724

RESUMO

We hypothesized that schizandrin (SCH) A, a lignan found in the fruits of the Schisandra genus, would exert protective effects against high-fat and high-cholesterol (HFHC) diet-induced nonalcoholic fatty liver disease (NAFLD) via regulation of lipid metabolism and oxidative stress. To test our hypothesis, male C57BL/6J mice were fed an HFHC diet with or without SCH A for 15 weeks. There were no significant differences in food intake, body weight, fat mass, and plasma total cholesterol level between the 2 groups. However, supplementation of SCH A significantly decreased levels of plasma free fatty acid and triglyceride, whereas plasma high-density lipoprotein cholesterol level was increased in the SCH A-supplemented mice. Moreover, hepatic free fatty acid, triglyceride, and cholesterol content, as well as hepatic lipid droplet accumulation, were markedly lower in the SCH A group in contrast to the control group. Activity of hepatic enzymes involved in fatty acid and triglyceride synthesis was significantly decreased by SCH A supplementation, whereas SCH A markedly increased hepatic ß-oxidation and fatty acid oxidation-related gene expression as well as fecal excretion of free fatty acid and triglyceride. SCH A also significantly increased expression of genes involved in cholesterol homeostasis (biliary cholesterol excretion and cholesterol efflux to high-density lipoprotein) in the liver. Moreover, SCH A significantly decreased hepatic lipid peroxidation, which was accompanied by increased hepatic antioxidant enzymes activity. These results suggest that SCH A could alleviate HFHC diet-induced NAFLD by regulating hepatic lipid metabolism and oxidative stress as well as fecal lipid excretion.


Assuntos
Colesterol na Dieta/metabolismo , Ciclo-Octanos/uso terapêutico , Lignanas/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Compostos Policíclicos/uso terapêutico , Schisandra/química , Animais , Antioxidantes/metabolismo , Colesterol/sangue , Colesterol/metabolismo , Colesterol na Dieta/administração & dosagem , Colesterol na Dieta/efeitos adversos , Colesterol na Dieta/sangue , HDL-Colesterol/sangue , Ciclo-Octanos/farmacologia , Dieta Hiperlipídica , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/metabolismo , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados/sangue , Fezes/química , Lignanas/farmacologia , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Compostos Policíclicos/farmacologia , Triglicerídeos/sangue
18.
Braz. j. med. biol. res ; 52(10): e8385, 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1039242

RESUMO

Malignant melanoma (MM) is one of the malignant tumors with highly metastatic and aggressive biological actions. Schizandrin A (SchA) is a bioactive lignin compound with strong anti-oxidant and anti-aging properties, which is stable at room temperature and is often stored in a cool dry place. Hence, we investigated the effects of SchA on MM cell line A375 and its underlying mechanism. A375 cells were used to construct an in vitro MM cell model. Cell viability, proliferation, apoptosis, and migration were detected by Cell Counting Kit-8, BrdU assay, flow cytometry, and transwell two-chamber assay, respectively. The cell cycle-related protein cyclin D1 and cell apoptotic proteins (Bcl-2, Bax, cleaved-caspase-3, and cleaved-caspase-9) were analyzed by western blot. Alteration of H19 expression was achieved by transfecting with pEX-H19. PI3K/AKT pathway was measured by detecting phosphorylation of PI3K and AKT. SchA significantly decreased cell viability in a dose-dependent manner. Furthermore, SchA inhibited cell proliferation and cyclin D1 expression. SchA increased cell apoptosis along with the up-regulation of pro-apoptotic proteins (cleaved-caspase-3, cleaved-caspase-9, and Bax) and the down-regulation of anti-apoptotic protein (Bcl-2). Besides, SchA decreased migration and down-regulated matrix metalloproteinases (MMP)-2 and MMP-9. SchA down-regulated lncRNA H19. Overexpression of H19 blockaded the inhibitory effects of SchA on A375 cells. SchA decreased the phosphorylation of PI3K and AKT while H19 overexpression promoted the phosphorylation of PI3K and AKT. SchA inhibited A375 cell growth, migration, and the PI3K/AKT pathway through down-regulating H19.


Assuntos
Humanos , Compostos Policíclicos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Lignanas/farmacologia , Ciclo-Octanos/farmacologia , Proliferação de Células/efeitos dos fármacos , Melanoma/patologia , Transdução de Sinais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Western Blotting , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Reação em Cadeia da Polimerase em Tempo Real , RNA Longo não Codificante
19.
Cell Physiol Biochem ; 49(6): 2229-2239, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30257250

RESUMO

BACKGROUND/AIMS: Inflammatory skin diseases are the most common problems in dermatology. Schizandrin A (SchA) has been reported to have anti-inflammatory properties. Herein, we aimed to investigate the protective effects of SchA on lipopolysaccharide (LPS)-induced injury in keratinocyte HaCaT cells. METHODS: Inflammation injury in HaCaT cells was induced by LPS treatment. Cell viability, apoptotic cell rate, and apoptosis-related proteins were analyzed by cell counting kit-8 (CCK-8) assay, Annexin V-(fluorescein isothiocyanate (FITC)/ Propidium Iodide (PI) double staining method, and western blot, respectively. The pro-inflammatory factors were analyzed by western blot and quantified by enzyme linked immunosorbent assay (ELISA). Expression of miR-127 in SchA-treated cells was analyzed by qRT-PCR. The effects of SchA on activations of p38MAPK/ERK and JNK pathways were analyzed by western blot. RESULTS: SchA protected HaCaT cells from LPS-induced inflammation damage via promoting cell viability, suppressing apoptosis. Meanwhile, SchA inhibited IL-1ß, IL-6, and TNF-α expression. miR-127 expression was up-regulated in LPS-treated HaCaT cells but down-regulated after SchA treatment. Overexpression of miR-127 inhibited cell growth and induced expression of IL-1ß, IL-6 and TNF-α. Additionally, miR-127 overexpression impaired the protective effects of SchA, implying miR-127 might be correlated to the anti-inflammation property of SchA and also involved in inactivation of p38MAPK/ERK and JNK pathways by SchA. CONCLUSION: miR-127 is involved in the protective functions of SchA on LPS-induced inflammation injury in human keratinocyte cell HaCaT, which might inactivates of p38MAPK/ERK and JNK signaling pathways in HaCaT cells.


Assuntos
Apoptose/efeitos dos fármacos , Ciclo-Octanos/farmacologia , Lignanas/farmacologia , MicroRNAs/metabolismo , Compostos Policíclicos/farmacologia , Antagomirs/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Biomed Pharmacother ; 99: 176-183, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29331856

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. Given the comments of Dr Elisabeth Bik regarding this article "This paper belongs to a set of over 400 papers (as per February 2020) that share very similar Western blots with tadpole-like shaped bands, the same background pattern, and striking similarities in title structures, paper layout, bar graph design, and - in a subset - flow cytometry panels", the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request and therefore the Editor-in-Chief decided to retract the article.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Ciclo-Octanos/uso terapêutico , Fluoruracila/uso terapêutico , Lignanas/uso terapêutico , MicroRNAs/genética , Compostos Policíclicos/uso terapêutico , Regulação para Cima/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Octanos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lignanas/farmacologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Compostos Policíclicos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...